

Available online at www.sciencedirect.com

Journal of Power Sources 146 (2005) 570-574

www.elsevier.com/locate/jpowsour

Cathode properties of amorphous and crystalline FePO₄

Shigeto Okada^{a,*}, Takafumi Yamamoto^a, Yasunori Okazaki^a, Jun-ichi Yamaki^a, Masahiro Tokunaga^b, Tetsuaki Nishida^b

^a Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga Koen, Kasuga 816-8580, Japan ^b School of Humanity-oriented Science and Engineering, Kinki University, Kayanomori, Iizuka 820-8555, Japan

Available online 23 June 2005

Abstract

 $FePO_4$ is an attractive rare-metal-free cathode active material. Simple and inexpensive new synthesis routes obtained from solution were investigated. P_2O_5 and Fe metal powders, both of which react in water at room temperature, were selected as inexpensive starting materials. Amorphous powders obtained through ball milling were annealed at various temperatures (100–650 °C) in air. IR spectra showed that PO_4 tetrahedra units existed even in the amorphous matrix. XRD peaks of the trigonal FePO₄ phase appeared above 500 °C. Reversible Fe³⁺/Fe²⁺ redox reactions in the amorphous and crystalline FePO₄ were confirmed by ⁵⁷Fe Mössbauer spectroscopy. The heating temperature dependence of the cathode properties is reported.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Olivine; Iron-phosphate; Amorphous

1. Introduction

Recently, two remarkable developments have emerged in cathode research: a high-voltage cathode with a 4.5-5 V plateau and an iron-based eco-friendly cathode for EV use. LiMPO₄-type phospho-olivine cathodes played an important role in both developments, for example, LiCoPO₄ as a 5 V cathode and LiFePO₄ as a rare-metal-free cathode [1,2]. However, divalent iron starting materials such as FeC₂O₄·2H₂O and (CH₃COO)₂Fe are expensive and toxic. In addition, the calcination process should be performed in an inert atmosphere. In order to keep production costs down, we changed the synthesis target from lithium iron(II) phosphate to iron(III) phosphate [3–7], which can be synthesized in air as shown in Table 1. Moreover, P₂O₅ and metallic iron powder were selected as inexpensive starting materials.

In this research, the cathode characteristics of the synthesized amorphous and crystalline trigonal FePO₄ are investigated using coin-type cells.

* Corresponding author. *E-mail address:* s-okada@cm.kyushu-u.ac.jp (S. Okada).

2. Experimental

We identified all the synthesized materials by XRD (Rigaku RINT2100HLR/PC) and FT-IR (JASCO 680 plus). In addition, we used TG-DSC (Rigaku Thermo Plus TG8110), GC/MS (Shimadzu), SEM (JEOL JSM-6060LA), and ⁵⁷Fe Mössbauer spectroscopy (Laboratory Equipment Corp.) where needed.

To improve the rate capability, the cathode powders (70 w/o) were dry ball milled with 25 w/o AB. Cathode pellets were then fabricated by mixing the powder with a 5 w/o PTFE Teflon binder (Polyflon TFE F-103, Daikin Industry Ltd.). We evaluated the electrochemical cathode performance in coin-type Li cells using a nonaqueous electrolyte (Mitsubishi Chemical Co. and Tomiyama Pure Chemicals Co.) and a polypropylene separator (Celgard 3501) against a Li metal anode.

3. Result and discussion

The P_2O_5 and metallic iron powders were reacted in water at room temperature. The precursor solution was mixed for 24 h by a planetary ball mill (200 rpm) and annealed at various

^{0378-7753/\$ –} see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2005.03.200

Table 1	
Synthesis conditions of FePO ₄	(P321) according to the current literature

Starting material		Atmosphere	Temperature ($^{\circ}$ C), time (h)	Reference
Fe source	P source			
$\overline{Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O}$	NH ₄ H ₂ PO ₄	Air	650, 24	[3]
$Fe(NO_3)_3 \cdot 9H_2O$	NH ₄ H ₂ PO ₄	Air	400, 4	[4]
Fe(NO ₃) ₃ ·9H ₂ O	K_2HPO_4	Air	650, 24	[5]
FeCl ₃	Na ₃ PO ₄	Air	350, 10	[6]
Fe	P_2O_5	Air	650, 12	This work

Fig. 1. Cathode assembly procedure and XRD profiles of obtained FePO₄ powders.

temperatures (100–650 °C) for 12 h in air. The XRD profiles shown in Fig. 1 indicate that the crystallization to the trigonal FePO₄ phase started above 500 °C. The crystalline phase annealed at 650 °C was identified as trigonal FePO₄ with a *P*321 space group (ICDD29-0715). The difference between delithiated orthorhombic phase from olivine LiFePO₄ and trigonal FePO₄ is shown in Fig. 2. The trigonal FePO₄ has the FeO₄ tetrahedra instead of the FeO₆ octahedra, and it consists of a corner-sharing framework with the FeO₄ and PO₄ tetrahedra. On the other hand, the FT-IR spectra (Fig. 3) showed that PO₄ tetrahedral units existed even in amorphous samples. An IR absorption peak around 1600 cm^{-1} , attributed to the H–O–H bending mode of crystal water, was detected in all samples except the crystalline sample. The TG-MS profile of Fig. 4 shows that outgas during annealing between 100 and 700 °C was water almost entirely. The crystal water content of each amorphous sample annealed at 100 °C can be roughly estimated by the weight loss in Fig. 5 as FePO₄·H₂O.

Fig. 2. Crystal structures of orthorhombic and trigonal FePO₄.

Fig. 3. FT-IR spectra of trigonal FePO₄ samples.

Fig. 4. TG-MS profiles of outgas from a-FePO₄.

Fig. 5. TG-DTA profiles of a-FePO₄.

Fig. 6. SEM and EDS mapping image of carbon on FePO₄ cathode pellet.

Fig. 7. Rate capability of a-FePO₄ and c-FePO₄.

Fig. 8. Cyclability of a-FePO₄ and c-FePO₄ at a rate of $0.1\,mA\,cm^{-2}$ between 2 and 3.9 V.

Uniform carbon distribution on the FePO₄ particle after 24 h dry ball milling (200 rpm) was confirmed by SEM and energy-dispersive spectroscopy (EDS) mapping image of carbon (Fig. 6). Actually, the specific capacity was maximally improved 35% by dry ball milling. The rate capability and

cyclability of the improved FePO₄ cathode are shown in Figs. 7 and 8, respectively. Both the amorphous (a) and crystalline (c) FePO₄ cathodes show a monotonically decreasing charge–discharge profile; in contrast, the olivine LiFePO₄ has a 3.4 V flat voltage plateau.

As mentioned above, the amorphous sample included crystal water in the matrix. Nevertheless, the amorphous sample was more reversible than the crystalline. In both samples, the highest reversible capacity was 153 mAh g⁻¹, which was obtained by annealing at 500 °C. In the cycling voltage range of 2–3.9 V, crystal water must be stable against the decomposition with H₂ and O₂ gas generation.

The ⁵⁷Fe Mössbauer spectra of the amorphous FePO₄ annealed at 100 °C and that of the crystalline one indicated that the matrixes of both samples had high-spin Fe(III) at the tetrahedral sites in their initial states (Fig. 9). In the fully charged state, it changed to Fe(II) in the octahedral site and returned to Fe(III) in the tetrahedral site again for the amorphous sample as shown in Fig. 10. However, in the crystalline sample, the Fe(II) state remained even in the fully recharged state. This must be a result of insufficient reversibility as shown in Fig. 8.

Fig. 9. ⁵⁷Fe Mössbauer spectra of a-FePO₄ and c-FePO₄ cathode pellets on the first cycle.

Fig. 10. Iron valence states in a-FePO₄ and c-FePO₄ matrix.

4. Conclusion

A new low-cost low-temperature synthesis route using P_2O_5 and Fe powders in air was proposed for FePO₄. TG-DSC and FT-IR spectra proved that amorphous FePO₄ included some crystal water in the matrix. Nevertheless, the reversible capacity of the a-FePO₄ exceeded that of c-FePO₄. Fe³⁺/Fe²⁺ redox reactions during cycling were confirmed in both a- and c-FePO₄ by ⁵⁷Fe Mössbauer spectrometry.

Acknowledgement

The present work was financially supported by the Japan Science and Technology Agency.

References

- A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.
- [2] A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1609.
- [3] P.P. Prosini, M. Lisi, S. Scaccia, M. Carewska, F. Cardellini, M. Pasquali, J. Electrochem. Soc. 149 (3) (2002) A297.
- [4] A. Hammouche, R.W. De Doncker, A. Kahoul, L. Telli, LiBD 2003 (9) (2003).
- [5] S. Scaccia, M. Carewska, A.D. Bartolomeo, P.P. Prosini, Thermochim. Acta 383 (2002) 145.
- [6] Y. Song, S. Yang, P.Y. Zavalij, M.S. Whittingham, Mater. Res. Bull. 37 (2002) 1249.
- [7] C. Masquelier, P. Reale, C. Wurm, M. Morcrette, L. Dupont, D. Larcher, J. Electrochem. Soc. 149 (2002) A1037.